Thursday, November 20, 2008

Product Design Parameters with Nanotechnology

Rapid innovation is a key benefit of nanotechnology. The rapid and flexible manufacturing process allows a design to be built and tested almost immediately. Because designers of nano-built products do not have to do any actual nanotechnology research, a high level of innovation can be accommodated without giving designers any access to dangerous kinds of products. As mentioned above, a design with billion-atom, sub-micro blocks—permitting specification of near-biological levels of complexity—would still pose no risk of illicit self-replication. The minimum building block size in a design could be restricted by the design system. A fully automated evaluation and approval process could also consider the energy and power contained in the design, its mechanical integrity, and the amount of computer power built in. The block-based design system provides a simple interface to the block-based convergent assembly system. A variety of design systems could be implemented using the same nanofactory hardware, and the designer would not have to become an expert on the process of construction to create buildable designs.

With a safe-design personal nanofactory, adults—and even children—could safely play with advanced robotics, inventing and constructing almost anything they could imagine. (Today, adults as well as children find it worthwhile to play with the Lego MindStorms™ system.) More powerful products would require an engineering certification. This could be given to any responsible adult, since even a malicious product engineer would be unable to bypass the factory's programming and cause it to make illicit fabricators. A product that included chemical or nanomechanical manipulation ability would have to be carefully controlled, even during the design phase, to prevent the designer from building something that could be used for illicit nanomanufacturing.

Risks and dangers associated with products could be assessed on a per-product basis. Many products, produced with simplified design kits, could be approved with only automated analysis of their design. Most others could be approved after a safety and efficacy assessment similar to today's approval processes. Only rarely would a new degree of nanotechnological functionality be required, so each case could be carefully assessed before the functionality was added to appropriately restricted design programs.

Product approval for worldwide availability could depend on any of several factors. First, unless designed with a child-safe design program, it could be evaluated for engineering safety. Second, if the design incorporated intellectual property, the owner of the property could specify licensing terms. Third, local jurisdictional restrictions could be imposed, tagging the file according to where it could and could not be manufactured. Finally, the design would be placed in the global catalog, available for anyone to use.

No comments: