Moore’s law in the form of the original graph from 1965 suggesting a doubling of the number of components per microchip each year. (b) For the past 30 years Moore’s law has been obeyed by the number of transistors in Intel processors and DRAM chips, however only with a doubling time of 18 months. A result extremely powerful computers and efficient communication systems have emerged with a subsequent profound change in the daily lives of all of us. A modern computer chip contains more than 10 million transistors, and the smallest wire width are incredibly small, now entering the sub 100 nm range. Just as the American microprocessor manufacturer, Intel, at the end of 2003 shipped its first high-volume 90 nm line width production to the market, the company announced that it expects to ramp its new 65 nm process in 2005 in the production of static RAM chips.1 Nanotechnology with active components is now part of ordinary consumer products. Conventional microtechnology is a top-down technology. This means that the microstructures are fabricated by manipulating a large piece of material, typically a silicon crystal, using processes like lithography, etching, and metallization. However, such an approach is not the only possibility. There is another remarkable consequence of the development of micro and nanotechnology.
Since the mid-1980’ies a number of very advanced instruments for observation and manipulation of individual atoms and molecules have been invented. Most notable are the atomic force microscope (AFM) and the scanning tunnel microscope (STM) that will be treated later in the lecture notes. These instruments have had en enormous impact on fundamental science as the key elements in numerous discoveries. The instrumentshave also boosted a new approach to technology denoted bottom-up, where instead of making small structure out over large structures, the small structures are made directly by assembling of molecules and atoms.
No comments:
Post a Comment