Monday, November 24, 2008

Intervention

Medical intervention generally consists of either surgery or drugs. To reach an area inside the body, the body must be cut somewhere. Drugs are usually delivered to the entire body at once. Most medical interventions today are designed to fix a specific problem, and are applied after the problem has already developed.

State of the art surgical technique uses instruments inserted through small tubes placed in small incisions. These instruments are necessarily simple; for example, a gripper or a blade. Although surgical robots are coming into use for certain delicate operations, the robots are considerably bigger than the area they operate on. We don't yet have robots that could fit through the tubes and do complicated operations on-site. Nanotech can eliminate this problem. The smallest acupuncture needle is 120 microns, or about as wide as twelve cells. 120 microns is 2,400 times as wide as a flagellar or electrostatic motor. A remarkably complex surgical robot could thus be inserted through a hole so small it doesn't even bleed.

Nanobots will probably be able to stitch tissue together at a cellular/molecular level, greatly accelerating the wound-healing process. This means that if large incisions are required, for example to replace whole organs, they can be repaired as part of the surgery. Accidental trauma will also be relatively easy to fix.

The normal way to deliver a chemical today is to dump it into either the bloodstream or the stomach, and let it spread all through the body. For some chemicals, such as insulin, this is appropriate. But for others, such as chemotherapy drugs and some antibiotics, it is best to keep them as local as possible. Nanosurgical techniques can put drug delivery devices right where they are needed. The devices can be numerous and tiny, so that they can be inserted into any organ. In most cases, the devices could manufacture the required chemicals on the spot, using elements and energy from the surrounding tissue, thus eliminating the need for holding tanks and external supply. (Nature has demonstrated that a complex chemical factory can fit into the space of a bacterium.)

No comments: