A problem can't be corrected unless it is first detected. One of the first contributions nanotech will make to medicine is in the area of research. Miniaturization will create probes that gather orders of magnitude more data. Chemical sensors can be built small enough to put inside living cells. Probes may be thin enough to go through tissue without causing noticeable injury. Small, low-power devices may be implanted for continuous monitoring.
The human genome project will prove invaluable for understanding the biotechnology of the body; however, the genome is only a static record of what proteins the body is capable of making, and what molecular switches enable their manufacture. Information about the actual concentrations of proteins in living cells during the body's normal operation would be equally valuable. Such measurements could not be made today, but would be feasible with nanotech sensors capable of fitting inside single cells.
In order to detect the state of the body, information from thousands or millions of sensors would need to be coordinated. A Pentium-class nanocomputer could fit in 1/1000 the volume of a single cell. There are several ways that sensors can communicate, among themselves and with computers outside the body.
Miniaturization and efficiency would allow implanted sensors to be used full-time. Full-time sensors could detect medical problems before they became serious. In conjunction with other technologies, continuous monitoring could allow the full-time maintenance of a state of good health. Permanent implants could also interact directly with our fast systems, giving the body a continuous tuneup.
No comments:
Post a Comment