Monday, November 24, 2008

Introduction of Nanotechnology and Life Extension

This article is not really about life extension. Instead, its focus is on health extension: keeping the body in a state of good health. This is a simpler topic, because we can ignore several philosophical questions. However, as the chapter unfolds, it will become clear that life extension is a natural consequence of health extension. As diseases are cured, causes of death will be avoided; as people make use of technology to improve their health, they will find themselves living longer--perhaps much longer.

A few thousand years ago, people lived about thirty years. From their point of view, we have already extended our lives to an amazing degree. However, from where we stand today, we can see that we still have a long way to go. Some people still die in their 40's from cancer, heart attack, stroke, and infections. This is tragic, and frustrating. Today's medicine is only somewhat able to deal with these and other conditions--and it has barely started to attack the problem of aging. But we can see light at the end of the tunnel.

Fifty years from now, what causes of death will be preventable? That depends largely on the technology we will have available, so let's start by projecting some technology trends. Gene sequencing and identification will be as easy as a blood sugar test. Medical devices such as artificial hearts and insulin pumps will be implantable and well-integrated with the body's natural demands. Surgical instruments will be more delicate and less destructive; what today is "major surgery" will be done with an office visit. Computers will be millions of times faster than today's machines. Last but not least, we will probably have the ability to build strong, useful, complex machines out of individual atoms and molecules. This is called "nanotechnology" or simply "nanotech", and it will make us healthier in several important ways.

Can we expect technology to solve all our medical problems? This chapter will answer that question by examining what nanotech can do for medicine. Nanotech is a huge topic, and medicine is even bigger, so this chapter can give only a sketchy overview. On the nanotech side, we will focus on robot-like machines with precise molecular parts; on the medicine side, we will limit ourselves to a mechanical view of medicine that mostly ignores the complexity that arises from all the body's systems working together. And I'll be remarkably unambitious (by future standards) in defining "good health": Good health is when the body is able to support typical activities without significant discomfort. (Optimum health is a matter of personal preference, and the chapter is long enough without getting into all the ways people could improve their bodies.) Even with these restrictions, it will become clear that nanotech can solve most or all of the medical problems that might keep us from being in good health, thus allowing us to remain in a state of good health for many decades or even centuries.

No comments: